

18EC61

Sixth Semester B.E. Degree Examination, July/August 2022 Digital Communication

Time: 3 hrs.
Max. Marks: 100
Note : Answer any FIVE full questions, choosing ONE full question from each module.

1 a. What are the applications of Hilbert transform? Prove that a signal $\mathrm{g}(\mathrm{t})$ and its Hilbert transform $\hat{g}(\mathrm{t})$ are orthogonal over the entire time interval $(-\infty, \infty)$.
(08 Marks)
b. For a binary sequence 0100000001011 construct
i) RZ Bipolar format
ii) Manchester format
iii) B3ZS format iv)
iv) B6ZS format
v) HDB 3 format.
(08 Marks)
c. Define Pre-envelope of a real valued signal. Given a band pass signal $S(t)$, sketch the amplitude spectra of signal $S(t)$, Pre-envelope $S_{+}(t)$ and Complex envelope $\widetilde{S}(t)$. ($\mathbf{0 4}$ Marks)

OR

2 a. Express Bandpass signal $\mathrm{S}(\mathrm{t})$ in canonical form. Also explain the scheme for deriving the inphase and quadrature components of the band pass signal $\mathrm{S}(\mathrm{t})$.
(08 Marks)
b. Derive the expression for the complex low pass representation of band pass systems.
(08 Marks)
c. Write a note on HDBN signaling.
(04 Marks)

Module-2

3 a. Explain the geometric representation of set of M energy signals as linear combination of N orthonormal basis functions. Illustrate for the case $\mathrm{N}=2$ and $\mathrm{M}=3$ with necessary diagrams and expressions.
(10 Marks)
b. Explain the Correlation receiver using product integrator and matched filter.
(10 Marks)

OR

4 a. Using the Gram - Schmidt Orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals $S_{1}(t), S_{2}(t)$ and $S_{3}(t)$ shown in Fig. Q4(a). Also express each of these signals in terms of the set of basis functions.
(12 Marks)

Fig. Q4(a)

b. Show that for a noisy input, the mean value of the $\mathrm{j}^{\text {th }}$ correlator output X_{j} depends only on S_{ij} and all the correlator outputs $\mathrm{X}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots \ldots . \mathrm{N}$ have a variance equal to the $\operatorname{PSD} \mathrm{N}_{0 / 2}$ of the additive noise process $\mathrm{W}(\mathrm{t})$.
(08 Marks)

Module-3

5
a. Derive the expression for error probability of binary PSK using coherent detection.
(06 Marks)
b. Explain the generation and optimum detection of differential phase - shift keying, with neat block diagram.
(08 Marks)
c. A binary data is transmitted over a microwave link at a rate of 10^{6} bits/sec and the PSD of noise at the receiver is 10^{-10} watts $/ \mathrm{Hz}$. Find the average carrier power required to maintain an average probability of error $\mathrm{P}_{\mathrm{e}} \leq 10^{-4}$ for coherent binary FSK. What is the required channel bandwidth? (Given erf $(2.6)=0.9998)$.
(06 Marks)

OR

a. With a neat block diagram, explain the non - coherent detection of binary frequency shift keying technique.
(08 Marks)
b. In a FSK system, following data are observed. Transmitted binary data rate $=2.5 \times 10^{6}$ $\mathrm{bits} /$ second PSD of zero mean AWGN $=10^{-20} \mathrm{Watts} / \mathrm{Hz}$. Amplitude of received signal in the absence of noise $=1 \mu \mathrm{~V}$. Determine the average probability of symbol error assuming coherent detection. $($ Given $\operatorname{erf}(2.5)=0.99959)$.
(08 Marks)
c. What is the advantage of M - ary QAM over M - ary PSK system? Obtain the constellation of QAM for $M=4$ and draw signal space diagram.
(04 Marks)

Module-4

7 a. With a neat block diagram, explain the digital PAM technique through band limited base band channels. Also obtain the expression for inter symbol interference.
(08 Marks)
b. State and prove Nyquist condition for zero ISI.
(08 Marks)
c. With neat diagram and relevant expression, explain the concept of adaptive equalization.
(04 Marks)

OR

8 a. For a binary data sequence $\left\{d_{n}\right\}$ given by 11101001 . Determine the precoded sequence, transmitted sequence, received sequence and the decoded sequence.
(06 Marks)
b. Draw and explain the time - domain and frequency domain of duo - binary and modified duo binary signal.
(08 Marks)
c. With neat diagram, explain the timing features pertaining to eye diagram and its interpretation for base band binary data transmission system.
(06 Marks)

Module-5

9 a. Explain the model of a Spread Spectrum digital Communication system.
(08 Marks)
b. Explain the effect of dispreading on a narrow band interference in Direct Sequence Spread Spectrum System (DSSS). A DSSS signal is designed to have the power ratio $\mathrm{P}_{\mathrm{R}} / \mathrm{P}_{\mathrm{N}}$ at the intended receiver is 10^{-2}. If the desired $E_{b} / N_{0}=10$ for acceptable performance determine the minimum value of processing gain.
(08 Marks)
c. What is a PN sequence? Explain the generation of maximum length (ML - Sequence). What are the properties of ML sequences?
(04 Marks)

OR

10 a. With a neat block diagram, explain frequency Hopped Spread Spectrum Technique. Explain the terms Chip rate, Jamming Margin and Processing gain.
(10 Marks)
b. With a neat block diagram, explain the CDMA System based on IS -95.

