

1 of 2

(08 Marks)

(04 Marks)

Module-3

- Derive the expression for error probability of binary PSK using coherent detection. a.
- (06 Marks) Explain the generation and optimum detection of differential phase – shift keying, with neat b. block diagram. (08 Marks)
- A binary data is transmitted over a microwave link at a rate of 10⁶ bits/sec and the PSD of c. noise at the receiver is 10⁻¹⁰ watts/Hz. Find the average carrier power required to maintain an average probability of error $P_e \le 10^{-4}$ for coherent binary FSK. What is the required channel bandwidth? (Given erf(2.6) = 0.9998). (06 Marks)

- With a neat block diagram, explain the non coherent detection of binary frequency shift 6 a. keying technique. (08 Marks)
 - b. In a FSK system, following data are observed. Transmitted binary data rate = 2.5×10^6 bits/second PSD of zero mean AWGN = 10^{-20} Watts/Hz. Amplitude of received signal in the absence of noise = $1\mu V$. Determine the average probability of symbol error assuming coherent detection. (Given erf(2.5) = 0.99959). (08 Marks)
 - c. What is the advantage of M ary QAM over M ary PSK system? Obtain the constellation of QAM for M = 4 and draw signal space diagram. (04 Marks)

Module-4

- With a neat block diagram, explain the digital PAM technique through band limited base 7 a. band channels. Also obtain the expression for inter symbol interference. (08 Marks)
 - State and prove Nyquist condition for zero ISI. b.
 - With neat diagram and relevant expression, explain the concept of adaptive equalization. c.

OR

- For a binary data sequence $\{d_n\}$ given by 1 1 1 0 1 0 0 1. Determine the precoded sequence, 8 a. transmitted sequence, received sequence and the decoded sequence. (06 Marks)
 - b. Draw and explain the time domain and frequency domain of duo binary and modified duo binary signal. (08 Marks)
 - With neat diagram, explain the timing features pertaining to eye diagram and its c. interpretation for base band binary data transmission system. (06 Marks)

Module-5

Explain the model of a Spread Spectrum digital Communication system. 9 (08 Marks) a. b. Explain the effect of dispreading on a narrow band interference in Direct Sequence Spread Spectrum System (DSSS). A DSSS signal is designed to have the power ratio P_R at the

intended receiver is 10⁻². If the desired $\frac{E_b}{N_0} = 10$ for acceptable performance determine the (08 Marks)

minimum value of processing gain.

c. What is a PN sequence? Explain the generation of maximum length (ML - Sequence). What are the properties of ML sequences? (04 Marks)

OR

- With a neat block diagram, explain frequency Hopped Spread Spectrum Technique. Explain 10 a. the terms Chip rate, Jamming Margin and Processing gain. (10 Marks)
 - b. With a neat block diagram, explain the CDMA System based on IS 95. (10 Marks)

* * * * * 2 of 2